MYCRONIC’s laser draws tissues: article published at Elektroniktidningen

The Swedish online magazine Elektroniktidningen recently published an article about the B-BRIGHTER project.

“It takes no more than ten minutes to produce a 10x10x1 millimetre piece of tissue from a hydrogel mixed with stem cells and MYCRONIC’s laser system drawing the structure. The next phase of the EU B-BRIGHTER project will be to bring the technology one step closer to a commercial product”. This is how the article about the B-BRIGHTER innovative 3D bioprint technology published the 12th of January on “Elektroniktidningen” begins. This online magazine provides the Swedish electronics industry with qualified news, analyses, and in-depth technical articles. They also have a website in Finland.

The article highlights the advantages of this new technology to produce bioprinted human tissues over what exists nowadays: “Creating living tissues is a relatively new area where capillary dispensing has been used to build layer after layer from the bone upwards. With laser technology it is possible to do the opposite and build freely in space in the hydrogel. It is also much faster, meaning that a higher proportion of cells are still alive when the tissue is complete”.

In B-BRIGHTER technology, an acousto-optic technique is a key element. It is used to control the light from the laser and consists of two parts, one that affects the intensity of the light and one that affects the direction. “Starting with a 3D cad of the object to be manufactured, it is converted into voxels, each of which has a position and an intensity. It is possible to create any pattern, says Robert Eklund at MYCRONIC.

The initial project (named BRIGHTER) was funded with almost 3 million € by the EU, while the continuation, the B-BRIGHTER project, has received more that 1,5 million € for creating a product that can manufacture tissues and bring it closer to the market. In the actual phase, researchers are trying to make different types of tissues including skin, cornea and intestine, all of which have their characteristic shapes.

The article also emphasizes that the system will not only produce tissues, but by using a separate laser it will also be possible to see what is happening in real time.

You can read the original article in this link.

The Swedish online magazine Elektroniktidningen recently published an article about the B-BRIGHTER project.

Mycronic hosts the kick-off meeting of the EU project B-BRIGHTER

Recently took place at Mycronic, in Sweden, the kick-off meeting of the B-BRIGHTER project. Members of all partner institutions participated to lay the first stone of this exciting bioprinting project.

B-BRIGHTER (Better bioprinting by light sheet lithography: engineering complex tissues with high resolution at high speed) project is a EIC Transition project funded by the EU and coordinated by Dr. Gustaf Märtensson and his team at Mycronic, a global supplier of high precision production of electronics technology and equipment. B-BRIGHTER is the natural continuation of the EU project BRIGHTER, ended last December, and it aims to bring the new bioprinting technology closer to the market, being naturally more oriented to the industry and investors.

Project members meet last 19th of October in Täby, Sweden, to discuss about their role and responsibilities in the project, and about its functioning, including the main production and research lines. They also defined the work plan for the following months and the near future actions inside each work package.

B-BRIGHTER at a glance

B-BRIGHTER will develop a novel bioprinting technology able to produce engineered tissues with high spatial resolution at high printing speed using an original top-down lithography approach. The project has the objective of establishing a business case for the light-based bioprinter.

In contrast with current bottom up, layer-by-layer bioprinting methods, B-BRIGHTER aims at ultrahigh-speed digital light-sheet illumination strategy to selectively photo-crosslink cell-laden hydrogels mimicking specific tissues, in confined voxels and produce three-dimensional complex geometries. For this, researchers will develop a top-down lithography method that will enable adjusting the spatial structure and the stiffness with an unprecedented resolution to create the same heterogeneous microstructures that cells find in natural tissues.

As a proof-of-concept, researchers will engineer three complex barrier tissues models: skin, cornea and gut. B-BRIGHTER technology will enable the bioprinting of key anatomical microfeatures of tissue such as invaginations, evaginations or wavy morphologies. It will also incorporate hollow vascular structures while maintaining tissue mechanical integrity without the need of additional sacrificial material

The B-BRIGHTER consortium (the same as in BRIGHTER) is composed by: Mycronic, as coordinator; the Institute for Bioengineering of Catalonia (IBEC); the Buchmann Institute for Molecular Life Sciences (BMLS) of the Goethe University Frankfurt (GUF); the Technion–Israel Institute of Technology and the company Cellendes.

Producing tissue and organs through lithography

Source: Goethe-Universität Frankfurt am Main

EU Project BRIGHTER sets its sights on 3D bioprinting systems with light sheet lithography.

FRANKFURT. The production of artificial organs is a hot research topic. In the near future, artificial organs will compensate for the lack of organ donations and replace animal experiments. Although there are already promising experiments with 3D printers that use a “bio-ink” containing living cells, a functional organ has never been created in this way. A European consortium coordinated by Dr Elena Martinez (IBEC, Barcelona, Spain) and involving the Goethe University Frankfurt is now breaking new ground. The consortium is developing a lithography method that relies on light sheet illumination and on special photosensitive hydrogels that are mixed with living cells.

Bio-printing systems that build up structures layer by layer (bottom-up approach) have considerable disadvantages. On the one hand, the printing process takes far too long, so that the survival chances of the cells in the bio-ink and in the polymerised layers considerably decrease. Furthermore, the extrusion pressure leads to a considerable cell death rate, especially for stem cells. In addition, the resolution of the method, around 300 micrometers, is far too low to reproduce the delicate structures of natural tissue. Finally, it is particularly difficult to integrate complex hollow structures, e.g. blood vessels, into the cell tissue.

“With our project, we want to go the other way round by developing a top-down lithography method,” explains Dr. Francesco Pampaloni from the Buchmann Institute for Molecular Life Sciences (BMLS) at Goethe University. The process works in a similar way to lithography in semiconductor technology. Instead of the semiconductor and the photosensitive layer, which is illuminated by a mask, a hydrogel with photosensitive molecules is used. This is exposed to a thin laser light sheet using the technique invented by Prof. Ernst Stelzer for light sheet microscopy. This leads to the formation of branched chain structures (polymers) that serve as a matrix for colonisation by living cells. The remaining, still liquid hydrogel is washed out.

“This method will enable us to adjust the spatial structure and the stiffness with an unprecedented resolution so that we can create the same heterogeneous microstructures that cells find in natural tissues,” explains Pampaloni. Pampaloni expects that completely new possibilities will emerge for the bio-fabrication of complex tissues and their anatomical microstructures. In addition, the specific properties of the matrix can be used to introduce stem cells into well-defined compartments or to enable the formation of vessels. Further advantages over conventional 3D printing systems are high speed and cost-effective production.

BRIGHTER stands for “Bioprinting by light sheet lithography: engineering complex tissues with high resolution at high speed”. Starting in July 2019, the project will be funded for three years as part of the European Union’s renowned and highly selective “Future and Emerging Technologies” (FET) Open Horizon 2020 Programme. BRIGHTER will be financed with a total of € 3,450,000, of which € 700,000 will go to a team led by Dr. Pampaloni in Prof. Stelzer’s Physical Biology Group in the Biosciences Department of the Goethe University. Further partners are the IBEC (Barcelona, Spain, coordination), Technion (Haifa, Israel) and the companies Cellendes (Reutlingen, Germany) and Mycronic (Täby, Sweden).

An image may be downloaded here: http://www.uni-frankfurt.de/78299401
Credit: F. Pampaloni, BRIGHTER, 2019
Caption: Light sheet bio-printing. A hydrogel composed of living cells and photosensitive molecules is deposited in a special cuvette. A thin laser light sheet illuminates the gel following a programmed pattern (green beam). This leads to the formation of 3D micro-structures that reproduce the tissue architecture and function. The remaining, still liquid hydrogel is washed out after the printing process.
Further information: Dr Francesco Pampaloni, Physical Biology, Faculty of Biological Sciences, Riedberg Campus, Phone: (069) 798-42544, fpampalo@bio.uni-frankfurt.de, https://www.physikalischebiologie.de/people/francesco-pampaloni

Current news about science, teaching, and society can be found on GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a “foundation university”. Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet: www.uni-frankfurt.de

Publisher: The President of Goethe University Editor: Dr. Anne Hardy, Science Editor, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: -49 (0) 69 798-13035, Fax: +49 (0) 69 798-763 12531, hardy@pvw.uni-frankfurt.de.


Wissenschaftliche Ansprechpartner:

Dr Francesco Pampaloni, Physical Biology, Faculty of Biological Sciences, Riedberg Campus, Phone: (069) 798-42544, fpampalo@bio.uni-frankfurt.de, https://www.physikalischebiologie.de/people/francesco-pampaloni